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ABSTRACT
Watershed management is a common pool resource appropriation
problem that shows unique complexities due to the underlying
downstream flow variable. It also involves multiple self-interested
and often conflicting entities, making it a challenging decision-
making problem. While water scarcity is increasingly becoming
a global issue, it is of utmost importance to improve the water re-
source allocation in terms of efficiency and equality.
Multiple previous works have used Multi-Agent System (MAS)
based methods for solving spatial water resource allocation as a
static optimisation problem. However, in real-world, watershed
management is both a spatial and temporal problem with uncertain
system dynamics involving long term sequential decision mak-
ing. Thus, we propose a deep multi-agent reinforcement learn-
ing (MARL) framework for watershed management. Further, we
demonstrate how inter-agent communication is essential in reach-
ing coordination in practical scenarios. We also use model-of-agent
approach to incorporate influencing among agents, thus capturing
complex societal dynamics that revolve around the watershed prob-
lem. To the best of our knowledge, this is the first work studying
watershed management using Deep Multi-Agent Reinforcement
Learning and emergent communicative behaviours.
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1 INTRODUCTION
With advances in economies and living standard across the globe,
there has been substantial growth of dependence onwater resources.
As a result, many communities are facing an acute shortage of water
resources. This shortage has been attributed to numerous factors
such as dynamic demographic patterns, changing energy mix, ur-
banisation, migration and industrialisation [14, 20, 28]. Human
activities and climate change are also worsening these problems all
across the globe and more prominently in developing countries [1].
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This increasing imbalance between demand and supply of water re-
sources makes it crucial for decision-makers to solve this conflict by
improving the fairness and effectiveness of watershed management.
While using socially optimal solutions and imposing them on the
population is one way out, it can often cause unwanted outcomes
pertaining to fairness in the process of decision making [4]. Such
solutions may also prompt agents to behave selfishly because of
displaced moral sentiments. It has been observed that promoting
collective actions through community organisations can be expen-
sive and creates a dependence on external schemes. Often, such
cooperation doesn’t sustain after the program ends [3].

Thus, it is crucial to allow the agents participating in water-
shed management to realise their interdependencies and internalise
the value of cooperation. In this regard, extensive work has been
dedicated to solving the problem of watershed management using
agent-based modelling [10, 12, 14, 18, 28]. More importantly, these
modelling approaches offer tools and techniques to decision-makers
for observing water resources, their quality and potential hazard
issues that can emerge from specific policies [29].

Traditionally, water resource management has been approached
in a centralised manner, assuming full information exchange be-
tween participating agents and perfect economic efficiency. How-
ever, such top-down approaches are not practical for real-world
contexts because the centralised management often fails to repre-
sent politically and socially feasible solutions. Decentralised man-
agement, on the other hand, can easily incorporate multiple and
independent decision-makers from its bottom-up approach [31].

To implement such a system, we simulate watershed manage-
ment as a multi-agent system (MAS) having spatially distributed wa-
ter users (agents) in a predefined environment. These autonomous
agents can act independently in the environment where they can
either be working towards achieving a system-wide goal or have
individual objectives. Watershed management in the context of
MAS can be posed as a resource management problem. It consists
of several self-interested parties that seek to gain benefit fromwater
in the system. This water can be used for various purposes such as
sustaining a city, generating hydroelectric power, irrigating farm
or growing a natural ecosystem.

A multitude of literature has been dedicated to optimising wa-
tershed management in MAS setting. However, works using Multi-
Agent RL are limited [8, 12, 18, 19, 31]. Moreover, these works
assume watershed management to be a static problem with a single
step decision making. To lift these restrictions and model complex
decision making, we tackle watershed management using Deep
Multi-Agent Reinforcement Learning. Reinforcement learning (RL)
is a sub-area of machine learning that allows learning through trial



and error while interacting with the environment. Recently, RL
has shown tremendous success in various domains such as robotic
control, game playing, networking and routing, data centre cooling
and many more [13, 16, 17, 26]. This success has partially been
due to the combination of reinforcement learning paradigm with
deep learning, to handle complex decision making and high dimen-
sional data. Along the same lines, deep multi-agent reinforcement
learning, which models multiple agents in an environment has also
proven to be successful in solving several cooperative and competi-
tive Multi-Agent tasks. Some of the applications include air traffic
control, power grid management, traffic signal control, data routing
in networks [2, 5, 27, 30].

Despite these successes, it is still a difficult problem to achieve
coordination in MARL. In this regard, several previous works have
proposed using centralised training to ensure coordination among
learning agents. [6, 7]. A large number of works are also dedicated
to the emergence of communication in multi-agent RL, where the
agents learn to communicate from scratch, determining what infor-
mation is essential to share in order to accomplish a task. However,
using centralised training for self-interested agents can be imprac-
tical for real-world use cases.

Recently, there has been a growing interest in modelling prob-
lems of common-pool resource appropriation through deep multi-
agent reinforcement learning [9, 11, 15, 23]. But the common pool
resources studied in these are spatially static. Watershed is also a
common pool resource which has flow characteristic and involves
complex interdependencies bounded by physical constraints as well
as agents’ behaviours. Such a resource can suffer from congestion
without careful coordination. This is because, without an effec-
tive communication strategy, the use of the resource by one agent
makes it difficult or impossible for others to access it. Furthermore,
in [22], the authors have shown that most common pool resource
experiments follow a structure of non-linear social dilemma with a
non-excludable resource demanded by multiple players. Watershed
management, as a common pool resource problem, shows spatial
effects and vertical downstream externalities. In our work, we add
on the dimension of temporal effect such that decision made by
multiple parties have long term consequences. Doing this makes
watershed management similar to the problem of sequential social
dilemmas. Moreover, inspired by the work in [11], we study the
effect of social influence on achieving coordination among agents.

The contributions of this paper are thus as follows:

(1) To propose watershed management as a Multi-Agent System
with dynamic water flows, changing water requirements of
agents and sequential decision making across multiple time
steps.

(2) To apply recent advances in communication and social influ-
ence in Deep Multi-Agent Reinforcement Learning setting
for solving the Watershed Management problem.

2 BACKGROUND
We consider a decentralized multi-agent reinforcement learning sce-
nario and formulate it as an 𝑁 -player partially observable Markov
game 𝑀 . The formulation includes a set 𝑆 containing all possi-
ble states of the environments, action sets for each of the agents

{A1,A2, ...,A𝑁 } where𝐴𝑖 is the set of actions for 𝑖𝑡ℎ agent, obser-
vation sets for each of the agents {O1,O2, ...,O𝑁 } where 𝑂𝑖 is the
set of observations available to the 𝑖𝑡ℎ agent. 𝑜𝑖 ∈ O𝑡

𝑖
is the observ-

able state of 𝑖𝑡ℎ agent at 𝑡𝑡ℎ timestep. The joint actions are given by
𝑎𝑡1, 𝑎

𝑡
2, ..., 𝑎

𝑡
𝑛 ∈ A1,A2, ...,A𝑁 where 𝑎𝑡

𝑖
is the action of 𝑖𝑡ℎ agent

at 𝑡𝑡ℎ timestep . This causes a change of state according to the sto-
chastic transition function T : S × A1 × A2 × ... × A𝑛 −→ 𝑆 ′

. Each player receives a reward according to the function 𝑟𝑖 :
S × A1 × A2 × ... × A𝑛 −→ R. The reward thus received by an
agent may depend on other agents’ actions. A trajectory is defined
as history of these variables.

Each agents learns an independent behaviour policy parametrized
by \ , whichmaps from observations to action distribution 𝜋𝑖 : O𝑖 −→
A𝑖 . An action 𝑎𝑡

𝑖
∈ 𝐴𝑖 is then deterministically, or stochastically

sampled from this distribution. The agent’s goal is to maximize long
term expected 𝛾−discounted reward, over a period of 𝑇 timesteps.
This is given by 𝐽 (\𝑖 ) = E[𝑅𝑖 ] where 𝑅𝑖 =

∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑖 (𝑜𝑡𝑖 , 𝑎
𝑡
𝑖
)

3 WATERSHED MANAGEMENT PROBLEM
Watershed Management is a problem of resource allocation consist-
ing of several self-interested agents. These agents can withdraw
water from a finite but common supply of water for individual
purposes. The problem involves several constraints, multiple objec-
tives, and optimisation involves continuous variables. For modelling
watershed management as a multi-agent system, we use the hypo-
thetical scenario first proposed in [31] and later used in [8, 19]. Fig.
1, shows a schematic diagram of the hypothetical watershed basin.
The scenario consists of a watershed basin with one mainstream
and one tributary. Three off-stream human agents are considered,
namely, one city (𝑂𝐻𝐴1) and two farms (𝑂𝐻𝐴2, 𝑂𝐻𝐴3). One Dam
(𝐼𝐻𝐴1) in the system is considered as an in-stream human agent.
Further, two ecosystem agents (𝐸𝐴1, 𝐸𝐴2) are considered, one on
the tributary and the other on the mainstream. The off-stream hu-
man agents can control the amount of water to withdraw from
the stream they are located at. A dam can control the release of
water from storage and in-flow stream. Ecosystems thrive upon the
water from the stream they are based on. To simulate non-linear
characteristics of realistic benefits from water, quadratic objective
functions are assigned to each agent.

Two kinds of constraints are imposed on control actions of each
agent in this scenario. First is a soft constraint, which relates to
rules pertaining to policies such as minimum water requirement.
Second is a hard constraint, which represents the physical con-
straints on the flow of water. In the real world, soft constraints can
be violated at some cost, however, hard constraints are impossible
to violate. In [8, 19, 31], constraints violations have been handled
by incorporating penalties into the objective function.

In our work, we modify the watershed management problem
so as to make it more practical for real-world implementation. In
particular, we address the following limitations in the hypothetical
scenario in question:

(1) Hard constraints are allowed to be violated, which is impos-
sible in the real world.

(2) The water flow rates are considered static and limited to very
few values. However, in the real world, they can constantly
change over time.



Figure 1: Watershed management, a schematic diagram [31]

(3) The water requirements for each agent are considered to be
static. Again, they can be variable over a long duration.

(4) The hypothetical scenario is only a one-step decision-making
problem. Watershed management, however, can be a long
term sequential decision-making task which can involve
temporally stretched inter-agent interactions.

Thus, we model watershed management with dynamic water
flows, changing minimum water requirements and temporally ex-
tended decision making across multiple timesteps. Furthermore, we
introduce a fixed ordering in agents’ decision making to simulate
downstream water flow, thus preventing hard constraint violations.

3.1 Watershed Management as Sequential
Decision Making

We consider timesteps in this model as one unit for which water
flows and requirements are constant. An episode is simulated with
T timesteps representing one annual cycle. Four agents are con-
sidered in the system, which are optimising six variables at every
timestep, four of which are directly controlled and the remaining
two are controlled indirectly (see Fig. 1). The four directly optimised
variables are as follows:

(1) Water withdrawn for industrial and municipal use in the city
represented by 𝑥1.

(2) Water withdrawn for irrigating farms. In this system, two
farms are considered. These variables are represented by 𝑥4
and 𝑥6.

(3) The water released from a dam that can be used for hydro-
electric power generation. It is given by 𝑥2.

We refer to agents controlling these variables as active agents. The
two indirectly controlled variables represent water flowing through
the two ecosystems and are given by the variables 𝑥3 and 𝑥5. These
are referred to as reactive agents. We represent water withdrawn
(for city and farm agents), water released (for dam agent) or water

Scenario Q1 Q2 S
` 𝜎 ` 𝜎 ` 𝜎

1 160 30 65 10 15 0
2 115 20 50 5 15 0
3 80 20 35 5 15 0

Table 1: Environmental flow variables in watershed manage-
ment

Variables Minimum Value Maximum Value
𝛼1 8 24
𝛼2 8 30
𝛼3 8 20
𝛼4 8 24
𝛼5 8 20
𝛼6 8 30

Table 2: Range of agent requirements in watershed manage-
ment

flowing through (for ecosystem agents) for 𝑖𝑡ℎ agent at 𝑡𝑡ℎ timestep
as 𝑥𝑡

𝑖
.

Dynamic flow rates and water requirements
There are two streams in the system whose flow rates can be vari-
able. These are represented by Q1 and Q2 cubic units. Furthermore,
there is a dam in the system having a capacity of S cubic units. In
[19], only three scenarios are considered for simulating different
flow rates and dam capacities. In our formulation, for simulating
changing environmental conditions, we allow the flow rates to be
dynamic. However, to ensure that a feasible situation still exists for
all agents, we sample the flow rates from a Gaussian distribution
having mean value as one of the flow rates in the three scenarios
proposed. This effectively allows the flow rates to change at every
timestep as the scenario is also changing, and they can take on a
wide range of values. Furthermore, since dam capacity is an infras-
tructure based value, we do not change it at every timestep. Table
1 shows the ` and 𝜎 values of Gaussian distribution from which
flows are randomly sampled.

Similarly, for having dynamic water requirements for every
agent, we take a uniform random sample between a minimum
and maximum requirement range. The range values for 𝛼𝑖 for 𝑖𝑡ℎ
agent are given in Table 2.

Action Space: For each of the active agents, we consider action
𝑢𝑡
𝑖
as proportion of incoming water flow inf 𝑡𝑖 which the agent can

access. Thus, an agent 𝑖 can withdraw (or, for the dam agent, release)
𝑥𝑡
𝑖
= 𝑢𝑡

𝑖
∗ inf 𝑡𝑖 amount of water where 𝑢𝑡

𝑖
∈ [0, 1]. This makes sure

that hard constraints are never violated. However, such a scheme
requires that all reactive agents in a single timestep must act in
a fixed order. Particularly, this order is starting from agents near
waterbody source upstream towards agents that are downstream.
Note that for reactive agents, 𝑥𝑡

𝑖
= inf 𝑡𝑖 .

Constraints: Only soft constraints can be violated in our setup.
Moreover, these constraints are simplified as

𝑥𝑡𝑖 ≥ 𝛼𝑡𝑖 (1)



where 𝛼𝑡
𝑖
is water requirement for the 𝑖𝑡ℎ agent at 𝑡𝑡ℎ timestep

Agent Ordering: The ordering of agents for decision making
is based on their spatial arrangement in the watershed basin. For
the given hypothetical scenario, a valid ordering must satisfy the
following conditions

(1) Agent 2 acts after agent 1
(2) Agent 6 acts after agent 1, agent 2, agent 4

In our experiments, we have used the ordering
Agent 1 −→ 𝐴𝑔𝑒𝑛𝑡2 −→ 𝐴𝑔𝑒𝑛𝑡4 −→ 𝐴𝑔𝑒𝑛𝑡6

Further, the inflows for each agent can also be determined by
this arrangement and defined recursively based on inflows of other
agents. These are given in the following equations

inf 𝑡1 = 𝑄1𝑡 (2)

inf 𝑡2 = inf 𝑡1 (1 − 𝑢𝑡1) (3)
inf 𝑡3 = inf 𝑡4 (1 − 𝑢𝑡4) (4)

inf 𝑡4 = 𝑄2𝑡 (5)
inf 𝑡5 = inf 𝑡6 (1 − 𝑢𝑡6) (6)

inf 𝑡6 = inf 𝑡3 + (inf 𝑡2 + 𝑆)𝑢𝑡2 (7)
Observation Space: The observation space for each agent

consists of its own incoming flow as well as its personal water
requirement at every timestep. Since we have defined some inflows
in the observation vector, the current observation 𝑜𝑖 ∈ O𝑖 thus
becomes a function of other agents’ actions. In our experiments,
we further explore other scenarios where global information is
available and when communication is used. These are described in
the following sections.

Rewards: We define two kinds of reward function for each
agent and one penalty function. One of the rewards is provided
immediately at every timestep and is represented by 𝑓𝑖 for the
𝑖𝑡ℎ agent. This immediate reward is a quadratic function of water
withdrawn at the current timestep and is given by

𝑓𝑖 (𝑥𝑡𝑖 ) = 𝑎𝑖 (𝑥𝑡𝑖 )
2 + 𝑏𝑖𝑥𝑡𝑖 + 𝑐𝑖 (8)

where, for 𝑖𝑡ℎ agent, 𝑥𝑡
𝑖
is water withdrawn at 𝑡𝑡ℎ timestep and

𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 are dimensionless constants given in Table 3. This reward
conceptualizes the benefits gained from water for various purposes
for different agents. Note that we will use a negative value for 𝑎𝑖
which means that this quadratic function will have positive reward
only for a particular range of 𝑥𝑡

𝑖
. This makes sure that both the

scenarios where an agent withdraws too much or too little water
will result in negative reward.

The other reward 𝑔𝑖 is given at the end of episode. We define
it as a linear function of cumulative water withdrawn by the 𝑖𝑡ℎ
agent across T timesteps, normalised by total water requirement by
that agent. This reward incentivises agents to extract more water in
the long run and is larger for agents who have fulfilled their water
requirements for most timesteps. The episode end reward function
for the 𝑖𝑡ℎ agent is given by

𝑔𝑖 (𝑡) =
{
0 𝑡 < 𝑇
𝑋𝑖

𝐴𝑖
𝑑𝑖 𝑡 = 𝑇

(9)

where 𝑋𝑖 is the cumulative water withdrawn (or released for dam
agent) and𝐴𝑡 is cumulative water requirements for 𝑖𝑡ℎ agent across
T timesteps. 𝑑𝑖 is a dimensionless constant which controls the

Parameter Value Parameter Value Parameter Value Parameter Value
a1 -0.20 b1 6 c1 -5 d1 100
a2 -0.06 b2 2.5 c2 0 d2 100
a3 -0.29 b3 6.28 c3 -3 d3 100
a4 -0.13 b4 6 c4 -6 d4 100
a5 -0.056 b5 3.74 c5 -23 d5 100
a6 -0.15 b6 7.6 c6 -15 d6 100

Table 3: Watershed Constants [19]

amount of weight to be given for cumulative reward. We keep it
same for all the agents, as is given in 3.

𝑋𝑖 =

𝑇∑︁
𝑡=1

𝑥𝑡𝑖 (10)

𝐴𝑖 =

𝑇∑︁
𝑡=1

𝛼𝑡𝑖 (11)

The penalty function incorporates soft violations, and we use
the same penalty function as described in [19]. It is given by

𝑓 𝑡𝑝 =

𝑁∑︁
𝑖=1

𝐶 (ℎ𝑡𝑖 + 1)𝛿𝑖 (12)

where 𝛿 is 0 when no violation is made and 1 if there is constraint
violation. C is 100 and ℎ𝑡

𝑖
represents amount of violation made by

𝑖𝑡ℎ agent at the 𝑡𝑡ℎ timestep. N is total number of soft constraints,
which in our case is equal to number of active agents. The reward
function at every timsetep thus becomes

𝑟𝑖 (𝑥𝑡𝑖 ) = 𝑓𝑖 (𝑥𝑡𝑖 ) + 𝑔𝑖 (𝑡) − 𝑓 𝑡𝑝 (13)

And the optimization function that each agent has to maximize
in an episode is thus given by

𝐹𝑖 (𝑥𝑖 ) =𝑚𝑎𝑥

𝑇∑︁
𝑡=1

[𝑟𝑖 (𝑥𝑡𝑖 )] (14)

where 𝑥𝑖 is the trajectory of water-actions taken by agent 𝑖 .

3.2 Inter-Agent Communication as a Bargaining
Process

In [31], the authors propose a bargaining scheme to allow agents
to observe local information and send the solution to a centralised
processor. This processor then computes violations and system
costs, which is then available to all the agents as information in the
next round. In our scenario, since we are simulating a completely
decentralised system, we model bargaining as a communication
process where messages are broadcasted to all agents prior to tak-
ing individual actions. Thus, for every agent, we define two policies.
The first policy is for generating communication messages for ev-
ery other agent, which are then broadcasted. The other policy is
for taking water-withdrawl decisions after observing the commu-
nication messages from other agents as well as local information
on water flow and requirements. We call them Communication
Policy and Water-Action Policy, respectively. Thus, we define the
watershed management game in two phases, first for bargaining
using the communication policies. And the second phase for taking
water-based actions. The communication policies for all agents take
actions simultaneously while the water-action policies take actions



according to the ordering described in the previous section, after
the communication phase.

Furthermore, we can model a complex bargaining process using
multiple rounds of communication in the communication phase.
The output of the previous communication round is given as input
to the next round of communication. In this regard, we define
the observation space of the 𝑖𝑡ℎ agent’s communication policy to
include (i) personal water requirement, (ii) flow rates of streams in
the system (this is subject to global or local observation explained in
section 5.1), (iii) communication messages from the previous round.
Fig. 2 shows a schematic representation of using communication
policy along with the water-action policy.

The action space of communication policy is a discrete message
token for every other agent. This results in a vector of length 𝑛 − 1,
where 𝑛 are the number of agents in the system. We also fix the
vocabulary size of tokens to 𝑉 . The communication policies are
given the same rewards as water-action policies. This incentivises
communication policies to produce messages that benefit water-
action policies. For multistep communication, the reward is 0 for
all intermediary communication steps except the last one, before
which the second phase begins.

3.3 Intrinsic Reward through Social Influence
The work proposed by [11] consider using an intrinsic reward for
agents to improve coordination among self-interested agents. This
intrinsic reward is determined by the agents’ ability to causally
influence other agents’ actions. For implementing this, a separate
’model of (opponent) agent’ is developed that predicts the actions of
other agents. The authors argue that actions which cause a greater
change in the behaviour of other agents are highly influential and
must be rewarded. This causal influence is estimated by simulating
counterfactual actions, that is actions an agent could have taken,
and then their effect on other agents is determined.

The causal influence of agent 𝑗 on 𝑘 is computed as follows. First
the probability of agent 𝑗 ’s next action is computed conditioned on
the current state 𝑠𝑡 and action 𝑎𝑡

𝑘
of agent 𝑘 at 𝑡𝑡ℎ time step. This is

given as 𝑝 (𝑎𝑡
𝑗
|𝑎𝑡
𝑘
, 𝑠𝑡
𝑗
). Then the counterfactual action 𝑎𝑡

𝑘
is replaced

in place of actual action 𝑎𝑡
𝑘
. Several actions are then sampled, and

the resulting distribution of 𝑗 in each case is averaged, to obtained
marginal policy of 𝑗 . In the original paper, discrete actions are
considered. However, in our work, watershed management has
continuous actions. Hence, we use Monte-Carlo sampling to obtain
the estimated marginal distribution of 𝑗 .

The causal influence of agent 𝑘 on agent 𝑗 is computed as the
discrepancy between the marginal policy of 𝑗 and the conditional
policy of 𝑗 given 𝑘’s action. This discrepancy is quantified using
KL divergence between the two measures. The influence reward
for agent 𝑘 is thus given by

𝑒𝑡𝑖 =

𝑁∑︁
𝑗=0, 𝑗≠𝑘

𝐷𝐾𝐿
𝑝 (𝑎𝑡𝑗 |𝑎𝑡𝑘 , 𝑠𝑡𝑗 ) | |

∑︁
�̃�𝑡
𝑘

𝑝 (𝑎𝑡𝑗 |𝑎
𝑡
𝑘
, 𝑠𝑡𝑗 )𝑝 (𝑎

𝑡
𝑘
|𝑠𝑡𝑗 )


 (15)

=

𝑁∑︁
𝑗=0, 𝑗≠𝑘

[
𝐷𝐾𝐿

[
𝑝 (𝑎𝑡𝑗 |𝑎

𝑡
𝑘
, 𝑠𝑡𝑗 ) | |𝑝 (𝑎

𝑡
𝑗 |𝑠
𝑡
𝑗 )
] ]

(16)

Thus the immediate reward for an agent becomes 𝑟𝑡
𝑖
+ 𝛽𝑒𝑡

𝑖
where

beta is the influence weight.

4 EXPERIMENTAL SETTINGS
4.1 Reward-Schemes, Observation Spaces,

Communication
In our experiments, we compare the performance of Deep Multi-
Agent RL Framework for watershed management problem across
different reward schemes, observation spaces and the choice of
using communication or not.

For rewarding the agent, we consider 2 scenarios:
(1) Global Reward : This is akin to the the setup in [19], where

all agents are given the same reward. Here, the watershed
management problem becomes a purely cooperative game.
The global reward is equal to sum of individual reward func-
tions for each agent as well as penalty on the system due to
constraint violation. At 𝑡𝑡ℎ timestep, the reward given to 𝑖𝑡ℎ
agent is given by

𝑟𝑖 (𝑥𝑡𝑖 ) =
6∑︁
𝑖=1

[
𝑓𝑖 (𝑥𝑡𝑖 ) + 𝑔𝑖 (𝑡) − 𝑓 𝑡𝑝

]
(17)

(2) Local Reward but with a global penalty: This rewarding
scheme is more realistic as it makes the agents self-interested.
However, when constraints are violated, the water deficit
agents affect the whole system. This adds repercussion on
actions taken by upstream agents which would otherwise
never get affected by the condition of agents downstream.
Thus, cooperative behaviour would be incentivised. At 𝑡𝑡ℎ

timestep, the reward given to 𝑖𝑡ℎ agent is given by

𝑟𝑖 (𝑥𝑡𝑖 ) = 𝑓𝑖 (𝑥𝑡𝑖 ) + 𝑔𝑖 (𝑡) − 𝑓 𝑡𝑝 (18)

For observation space, we again consider two scenarios:
(1) Global Observation: In this scenario, at every timestep, all

agents have full visibility of flow rates of mainstream and
tributary as well as minimum water requirement of all the
agents.

(2) Local Observation: In this scenario, at every timestep, an
agent only has visibility of its own water inflow and mini-
mum water requirement.

We also consider whether to use inter-agent communication
for simulating a bargaining process. In addition to this, we also
evaluate results on multistep communication with varying number
of communication phases. Lastly, we introduce an experiment with
additional intrinsic reward in the local observation, local reward
setting and show its results.

4.2 Implementation Details
The neural networks used in all the policies, except for Intrinsic
Reward Experiments, have the same architecture. All policies are
recurrent policies, that is they are keeping the state from previous
timesteps. First, the input is preprocessed by two fully connected
layers with 16 hidden units each. This is followed by LSTM cell with
128 cell size. The results are again processed by a fully connected
layer, and outputs are given. All water-action policies are Gaussian
policies which output mean and variance of a gaussian distribution.



Figure 2: Schematic diagram of using communication policy along with water-action policy

The output is scaled between 0 and 1 using a hyperbolic tan function.
For communication policies, 𝑉 outputs are returned, which are
probabilities corresponding to each of the communication symbols.
Here, 𝑉 is the communication message vocabulary size.

In the water-action policy for intrinsic reward experiment, we
use the same hyperparameters and architecture as in [11], unless
otherwise mentioned. An additional output head is used to model
other agent’s policies. Base layers are shared between this policy
and the actual policy that takes water-actions. The shared layers
consist of two fully connected layers with 16 hidden units each
followed by LSTM cell with 128 cell size. The output from LSTM is
post-processed with another fully connected layer. This output is
then passed to the two output heads which process it with another
fully connected layers based on their output sizes.

We optimize our models through Proximal Policy Optimization
[25]. We use a learning rate schedule that decays linearly from 1e-4
to 1e-5 at 1 million timesteps and then stays constant. Generalized
Advantage Estimation (GAE)[24] is used with GAE lambda value is
taken as 1.0, and KL coefficient is fixed at 0.2. As proposed in [21],
we use entropy regularization with entropy coefficient 0.001. The
value function loss coefficient is taken as 1e-4. All experiments are
ran for 200 iterations, each with 26000 training batches to stabilise
training. The vocabulary size of communicating policies is fixed to
3, and all experiments are run with time horizon T as 10.

4.3 Evaluation Metrics
While in a single agent Reinforcement Learning, value function
can be used as a measure of performance, the mixed incentives
in multi-agent games don’t allow for a straightforward metric for
gauging performance. Hence, we use some social metrics proposed
in [23] with some modifications, along with individual rewards for
each agent. Particularly, we use Utilitarian and Equality metrics.
Utilitarian Metric: Measures the total sum of rewards for all the
agents. It is given by

𝑈 = 𝐸

[∑𝑁
𝑖=1 𝑟𝑖

𝑇

]
(19)

EqualityMetric: Since rewards in our work can be negative, hence
Gini coefficient can’t be used. We thus use reciprocal of dispersion
index to quantify equality. It is given by

𝐸 = `𝑟 /𝜎2𝑟 (20)

where `𝑟 is the mean of rewards 𝑟𝑖 ’s and 𝜎𝑟 is the standard deviation
of 𝑟𝑖 ’s for 𝑖 from 1 to N and N is the number of agents.

5 RESULTS
We analyse the performance of different reward schemes, obser-
vation spaces, social influence and communication setups for the
watershed problem. Table 4 summarises the utilitarianmetric, equal-
ity metric and the average number of violations per step for each
of the experiment. Since environments with global rewards form
a fully cooperative system, we study them separately from local
reward scenario. Also, equality metric is not reported in global re-
ward scenarios. Fig. 3 and Fig. 4 show utility over training iterations
for global reward and local reward scenarios, respectively.

It is seen that the highest utility is achieved in the experiment
with global observation, global reward, without any inter-agent
communication or social influence. The communication-based sys-
tem, in the same scenario, has slightly lesser utility. We owe this
to non-stationarity introduced by communication channels which
leads to a sub-optimal solution. However, in local observation, local
reward scenario, communication plays a crucial role and achieves
a utility which is even better than global observation, local reward
scenario utility without communication. This shows that inter-
agent communication can provide necessary information that was
otherwise included in global observation. However, in local obser-
vation, global reward, the communication-based system fails to find
an optimal policy. We argue that having a global reward creates a
credit assignment problem for communicative policy, thus making
it hard to attribute reward for good or bad communication.



Figure 3: Utility across training iterations in global reward
scenarios

Figure 4: Utility across training iterations in local reward
scenarios

Figure 5: Equality across training iterations

We also report results on 2-step and 3-step communication. It
can be seen that 2-step communication brings slightly better util-
ity as compared to single step communication. However, 3-step
communication fails to converge in our case.

The last experiment of using social influence reward in local
observation, local reward scenario has a very similar utility as for
the experiment without social influence. This shows that commu-
nication is crucial for the watershed management task, and it can’t
completely be replaced by social influence.

Figure 6: Average number of violations across training itera-
tions

We also plot the average violations and equality metric over
training iterations for all experiments (see Fig. 6 and Fig. 5). Since
violations are heavily penalised, a general downward trend is seen
in it in all the experiments. In Table 4, it can be seen that violations
are close to zero at convergence. The equality metric, however,
shows an increasing trend, even though explicitly equality isn’t
rewarded. We only plot equality over training iteration for local
reward scenarios. We see that the highest equality is achieved in the
scenario with global observation. However, for local observation,
inter-agent communication achieves better equality than experi-
ment without communication. Further, we again see that social
influence experiment achieves equality very similar to experiment
without social influence.

5.1 Communication Analysis
We further explore if communication-based policy shows any pat-
tern in water-actions at different time steps in an episode. For
this, we sample one trajectory each from with-communication
and without-communication scenarios (with local observation, lo-
cal reward). Fig. 7 shows water-actions in both polices for dif-
ferent agents. It can be observed that while the policy without
communication takes safe actions, they do not show much varia-
tion. Communication-based policy, however, shows that at different
timesteps, different agents change their action. This behaviour is
desirable as agents can synchronise water-actions in such a way
that congestion doesn’t happen at a single timestep and greedy
actions are distributed across the episode.

As results in Table 4 suggest that communication-based policy in
local observation can achieve similar reward as communication-less
policy in global observation, we try to find what kind of informa-
tion these messages provide. In the local observation setting, the
communication policy can only see personal water requirements.
Hence, for every communication message, we plot the distribu-
tion of personal water requirements, binned into three categories
(see Fig. 8. It can be seen that message-1 clearly favours first bin,
message-2 third bin and message-3 has no clear winner. This sug-
gests that there is some kind of one-to-one association between
the communication message and water requirement, that is, agents
communicate their water requirements through message symbols.



Reward Scheme Observation Scheme Communication Social Influence Utility Equality Average Violations

Global Global No No 2430.048 ± 29.29 - 0.003 ± 0.0

Local Global No No 1532.312 ± 16.06 0.043 ± 0.02 0.001 ± 0.0

Global Local No No 2169.569 ± 27.92 - 0.002 ± 0.0

Local Local No No 1228.566 ± 25.52 0.003 ± 0.002 0.002 ± 0.0

Global Global Yes, 1 step No 2089.56 ± 32.13 - 0.001 ± 0.0

Local Global Yes, 1 step No 1408.306 ± 45.54 0.012 ± 0.0035 0.001 ± 0.0

Global Local Yes, 1 step No -17321.083 ± 310.78 - 0.206 ± 0.01

Local Local Yes, 1 step No 1660.134 ± 19.09 0.011 ± 0.003 0.001 ± 0.0

Local Local Yes, 2 step No 1739.77 ± 21.43 0.002 ± 0.001 0.0 ± 0.0

Local Local Yes, 3 step No -54929.427 ± 1521.86 -0.02 ± 0.002 0.184 ± 0.0

Local Local No Yes 1234.048 ± 30.94 0.0035 ± 0.001 0.001 ± 0.0

Local Local Yes, 1 step Yes 1087.28 ± 125.45 0.0045 ± 0.001 0.008 ± 0.0

Table 4: Individual agent rewards, utilitarian metric, equality metric and the average number of violations per step for different
experiments in the watershed management problem.

Figure 7: Water-actions by different agents across timesteps
in an episode

However, it can’t be ascertained without proper quantitative analy-
sis. To stay within the scope of our work, we leave this as future
work.

6 CONCLUSION AND FUTUREWORK
In this work, we have introduced a watershed management game
with dynamic inputs and sequential decision making. Further, we
have proposed a Deep Multi-Agent Framework for solving this
watershed management problem. In this regard, several configura-
tions are explored which correspond to varying rewarding schemes,

Figure 8: Water requirement distribution for different com-
munication messages

observation paradigms, whether to include inter-agent communi-
cation and providing social motivation. It is shown that communi-
cation is meaningful, demonstrates a desirable behaviour in agents
and helps improve the overall utility of the system. Social influence
is also shown to be limited in this scenario without a proper com-
munication channel. However, there is still scope of improvement
as the best utility is achieved only by globally rewarding agents,
which is a fully cooperative scenario. Thus we propose sequential
watershed management as a testbed for research into the use of
Deep MARL for real-world resource management problems.

For future work, we consider incorporating explicit communica-
tion channels which are given intrinsic reward using social motiva-
tion. There is also a scope of studying grounding of communication
messages. Lastly, our study has been limited to a hypothetical wa-
tershed basin. We would like to apply Deep MARL for decision
making in real-world watersheds and compare the results with
approaches from other disciplines.
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