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ABSTRACT
During epidemics, the population is asked to Socially Distance, with

pairs of individuals keeping two meters apart. We model this as a

new optimization problem by considering a team of agents placed

on the nodes of a network. Their common aim is to achieve pairwise

graph distances of at least 𝐷, a state we call socially distanced. (If
𝐷 = 1, they want to be at distinct nodes; if 𝐷 = 2, they want to be

non-adjacent.) We allow only a simple type of motion called a Lazy

Random Walk: with probability 𝑝 (called the laziness parameter),

they remain at their current node next period; with complementary

probability 1 − 𝑝 , they move to a random adjacent node. The team

seeks the common value of 𝑝 , which achieves social distance in

the least expected time, which is the absorption time of a Markov

chain. We also consider a game where competitive agents seek to

be alone at their own node before others are alone. Finally, we see

how dispersion can be speeded up when the agents are territorial.
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1 INTRODUCTION
To combat epidemics, three actions are recommended to the public:

mask wearing, hand washing, and social distancing. This paper

models the last of these in an abstract model of autonomous mobile

agents on a network. Social distancing can be considered a group

goal (common-interest game) or an individual goal (antagonistic,

non-cooperative game). We consider both goals in a dynamic model

where agents (players) walk on a network (graph). A group of𝑚

players, or mobile agents, is placed in some way on the nodes of a

network 𝑄. Each agent adopts a Lazy Random Walk (LRW), which

stays at his current node with a probability 𝑝 (called laziness) and

moves to a random adjacent node with complementary probability

1−𝑝 (called speed). In the common interest game, we seek a common

value of 𝑝 which minimizes the time for all pairs of players to

be at least 𝐷 nodes apart (socially distanced). Once 𝑝 is adopted

by all, the positions of the agents on the network (called states)

follow a Markov chain, with distanced states as absorbing. Standard

elementary results on absorption times for Markov chains are used

to optimize 𝑝 to find the value of 𝑝 , which is adopted by all agents

to minimize the absorption time. This work can be seen as an

extension to networks of the spatial dispersion problem introduced

by Alpern and Reyniers (2002), where agents could move freely

between any two locations. Grenager et al (2002) extended that

work to computer science areas, and Blume and Franco (2007) to

economics. See also Simanjuntak (2014).

It is clear that ours is an extremely abstract approach to the

problem of social distancing. For a very recent practical analysis

of the impact of social distancing on deaths from Covid-19, includ-

ing a monetary equivalent, see Greenstone and Nigam (2020). For

mental health implications of social distancing, see Venkatesh and

Edirappuli (2020), and for economic analysis, see Farboodi et al

(2021).

This paper is organized as follows. Section 2 describes our dy-

namicmodel of agents moving on a network according to a common

lazy random walk and derives the associated Markov chain. A for-

mula for the time to absorption (desired state) is derived. Section

3 considers two agents attempting to social distance on the cycle

graph. Section 4 considers three agents on the three-node cycle

graph 𝐶3 . Section 5 considers a game where 𝑛 competing players

start together at one end of a line graph, each choosing their own

laziness in a lazy random walk. In the first time period, where some

agents are alone at their node, these agents split a unit prize. When

𝑛 = 2 any pair (𝑝, 𝑝) is an equilibrium, but when 𝑛 = 3, there is no

symmetric equilibrium. Some larger problems of social distancing

are considered in section 6 using simulation. Section 7, taken from

Zeng (2023), analyzes the effect of territoriality of the agents on

dispersion times. Section 8 concludes. Aside from Section 7, this

paper is taken directly from Alpern and Zeng (2022). Some proofs

omitted here can be found there.

2 STATES AND LAZY RANDOMWALKS
The𝑚 agents in our model move on a connected network𝑄 with 𝑛

nodes, 𝑛 ≥ 𝑚, labelled 1 to 𝑛.We take a graph theoretic assumption

where all arc lengths are 1, so we will, from now on, call 𝑄 a graph.

2.1 States of the system
There are several ways to denote the state of the system. A general

way is to write square brackets [ 𝑗1, 𝑗2, . . . , 𝑗𝑛] , where 𝑗𝑖 is the num-

ber of agents at node 𝑖, with
∑𝑚
𝑖=1

𝑗𝑖 =𝑚. We call the number 𝑗𝑖 the

population of node 𝑖 . Attached to every state is a number 𝑑 denot-

ing the minimum distance between two agents, where we use the

graph distance between nodes (the number or arcs in the shortest

path). For example, if we number the nodes of the line graph 𝐿6

consecutively, and the state is [1, 0, 0, 1, 0, 1] , then 𝑑 = 2. If a state

has distance 𝑑, it is called socially distanced if 𝑑 ≥ 𝐷, where 𝐷 is a

parameter of the problem. For example, the state [1, 0, 0, 1, 0, 1] is
socially distanced for 𝐷 = 1 and 𝐷 = 2 but not for 𝐷 = 3. For the

social distancing problem, the states with 𝑑 ≥ 𝐷 are considered the

absorbing states.

2.2 Lazy RandomWalks
The unifying idea of this paper is the use of agent motions of the

following type.



Definition 1. A Lazy Random Walk (LRW) for an agent on the
graph𝑄, with laziness parameter 𝑝 (and speed 𝑞 = 1−𝑝) is as follows.
With probability 𝑝, stays at your current node. With probability
𝑞 = 1 − 𝑝 , go equiprobably to any of the 𝛿 adjacent nodes, where
𝛿 is the degree of your current node. If 𝑝 = 0, this is called simply
a Random Walk. If the graph has constant degree Δ, then an LRW
with 𝑝 = 1/(Δ + 1), the process is called a Loop-Random Walk. That
is because it would be a Random Walk if loops were added to every
node. That is, all adjacent nodes are chosen equiprobably, including
the current node.

If all the agents in the model follow independent LRWs with

the same value of 𝑝,, i.e. our main assumption, then a Markov

chain is thereby defined on the state space S. We only consider

triples 𝑚 (number of agents), 𝐷 desired social distancing and 𝑄

(the connected graph), where it is possible to have distanced states.

For example, the triple 𝑚 = 3, 𝐷 = 2 and 𝑄 = 𝐶5 (cycle graph

with 5 nodes) have no distanced states. In general, we assume that

the 𝐷−Independence number (maximum number of 𝐷 distanced

nodes) is at least𝑚. If 𝐷 = 1, this is called simply the independence

number. If 𝑛 = 𝑚 and 𝐷 = 1, we call this the spatial dispersion

problem of Alpern and Reyniers (2002), an important special case

of social distancing.

Given𝑄 (with 𝑛 nodes),𝑚 and 𝐷, there is a Markov chain on the

state space S with a non-empty set of absorbing states A. Suppose

we number the non-absorbing states as 1, 2, . . . , 𝑁 , and let 𝐵 denote

the 𝑁 ×𝑁 matrix where 𝑏𝑖, 𝑗 is the transition probability from state 𝑖

to state 𝑗 . Let 𝑡 be the vector (𝑡𝑖 ) denote the expected time (number

of transition steps) to reach an absorbing state from state 𝑖 . The 𝑡𝑖
then satisfy the simultaneous equations

𝑡1 = 1 + 𝑏11𝑡1 + · · · + 𝑏1𝑗 𝑡 𝑗 + · · · + 𝑏1𝑛𝑡𝑛 (1)

.

.

.

𝑡𝑖 = 1 + 𝑏𝑖1𝑡1 + · · · + 𝑏𝑖 𝑗 𝑡 𝑗 + · · · + 𝑏𝑖𝑛𝑡𝑛
.
.
.

𝑡𝑛 = 1 + 𝑏𝑛1𝑡1 + · · · + 𝑏𝑛𝑗 𝑡 𝑗 + · · · + 𝑏𝑛𝑛𝑡𝑛
We can write this in matrix terms, where 𝐽𝑛 the 1 by 𝑛 matrix of

1s and 𝐼𝑁 is the 𝑁 × 𝑁 identity matrix, as

𝑡 = 𝐽𝑛 + 𝐵𝑡, or

(𝐼𝑛 − 𝐵) 𝑡 = 𝐽𝑛, with solution

𝑡 = (𝐼𝑁 − 𝐵)−1 𝐽𝑛 .

So the solution for the absorption time vector 𝑡 is given by

𝑡 = 𝐹 𝐽𝑛, where (2)

𝐹 = (𝐼𝑁 − 𝐵)−1
is known as the fundamental matrix.

A useful variation is to allow agents to see the number𝑘 of agents

at their node, the population of the node. In this case, it may allow

a laziness 𝑝𝑘 that depends on this 𝑘. For example, if I find myself

at a node with three other agents, I stay there with probability 𝑝4,

which is a number that is part of the overall strategy. But generally,

and unless stated, we assume there is only one value of 𝑝 regardless

of the population of the node.

3 SOCIAL DISTANCING ON 𝐶𝑛, 𝑛 ≥ 4 WITH
𝐷 = 2

We begin with a simple example where two agents who start in

adjacent nodes try to achieve distance 𝐷 = 2 on a cycle graph 𝐶𝑛
with𝑛 ≥ 4 nodes.Cases𝑛 ≥ 5 and𝑛 = 4 have different solutions. We

take advantage of the symmetry of the cycle graph to use a reduced

state space determined by the distance 𝑗 between the agents. State

𝑗 covers all configurations where this distance is 𝑗 − 1, so that we

have the usual row and column numbers for our matrices. The

three states 𝑗 = 1, 2, 3 are depicted in Figure 1 for both 𝐶5 (top)

and𝐶4 bottom. For both cases of 𝑛, there are (up to symmetry) two

non-absorbing states (1 and 2) and a single absorbing state 3.

Figure 1: States for 𝐶5 and 𝐶4, 𝑑 = 2.

To see the difference between 𝑛 ≥ 5 and 𝑛 = 4, consider the

(expected) absorption time 𝑇 from state 2 when adopting a random

walk (an LRW with 𝑝 = 0). In 𝐶𝑛, 𝑛 ≥ 5, when both agents move

from state 2, if they go in the same direction (probability 1/2) or
towards each other (probability 1/4), they stay in state 2. If they go

in opposite directions (probability 1/4), they reach the absorbing

state 3. So 𝑇 satisfies the equation

𝑇 = (3/4) (1 +𝑇 ) + (1/4) (1) =⇒ 𝑇 = 4. (3)

However, in the graph𝐶4, if they start in state 2, they stay forever

in state 2, so 𝑇 = ∞. In the following two subsections on 𝑛 ≥ 5

and 𝑛 = 4, we consider Population Dependent Lazy Random Walks,

using the notation 𝑝1 = 𝑝 (used when alone at a node - in state 2)

and 𝑝2 = 𝑟 . We set 𝑞 = 1 − 𝑝 and 𝑠 = 1 − 𝑟 for the complementary

probabilities. We solve this problem and then the simpler LRW

problem by setting 𝑝1 = 𝑝2 ( 𝑝 = 𝑟 ).

3.1 The case of 𝐶𝑛, 𝑛 ≥ 5

The absorption times from states 𝑖 = 1, 2 are(
𝑡1 (𝑝, 𝑟 )
𝑡2 (𝑝, 𝑟 )

)
= 𝐹

(
1

1

)
=

1

𝛼

(
14𝑝+2

(1−𝑟 ) + 16
𝑟

(1−𝑝 )
12𝑟+4

(1−𝑝 ) + 8
𝑝

(1−𝑟 )

)
(4)

Since we are starting in state 2 we minimize 𝑡2 (𝑟, 𝑝) at

𝑝2 ≡ 𝑟 = 0, 𝑝1 = 𝑝 =

(√
33 − 5

)
/2 ≃ 0.372 28,

𝑡2 ≡ 𝑡2 (𝑝2, 𝑟2) =
(√

33 + 15

)
/8 ≃ 2. 593 1

2



3.2 The case of 𝐶4

On the graph 𝐶4, the transition matrix changes in the transition

probability from state 2 to state 2 because if the agents move away

from each other, the state remains state 2. The transitions among

the non-absorbing states are now

𝐵 =

(
𝑟2 + 𝑠2/2 2𝑟𝑠

𝑝𝑞 𝑝2 + 𝑞2

)
(5)

A similar analysis to that for 𝑛 ≥ 5 now shows that starting

from either state 1 or state 2, the optimal strategies are 𝑝2 = 𝑟 = 0

and 𝑝1 = 𝑝 = 1/2. Assuming this, we have 𝑡1 = 2 and 𝑡2 = 3.

This is counter-intuitive in that it is quicker to socially distance

starting with both agents at the same node than starting with them

at adjacent nodes. If we seek the optimal LRW, the solution depends

on where we start. If we start at state 2 (two at a node), then it

turns out that the random walk (𝑝 = 0) is optimal, with (as shown

above) an absorption time of 4. We already know that a random

walk starting at state 2 will never achieve social distancing, as

in this case, state 2 will never be left. In this case the optimal 𝑝

is (1/10) (−1 + (49 − 20

√
6)1/3 + (49 + 20

√
6)1/3) = 0.382 72. The

absorption time for this LRW is approximately 4.45.

4 THREE AGENTS ON THE CYCLE GRAPH 𝐶3

We consider how three agents placed on the nodes of𝐶3 can achieve

social distancing with 𝐷 = 1. This means that all pairwise distances

must be at least 1, that is, the agents must occupy distinct nodes.

This is also called the dispersion problem (one agent at each node).

It turns out, surprisingly, that the initial placement of the agents

does not affect the optimal strategy, which is the loop-random walk.

The proof of the following result is in Alpern and Zeng (2022).

Proposition 2. If three agents are placed in any way on the nodes
of 𝐶3, then the expected time to the social distanced state 𝑗 = 3

(one on each node) is uniquely minimized when the agents adopt the
loop-random walk (𝑝 = 1/3).

5 NO EQUILIBRIUM IN FIRST-TO-DISPERSE
GAME

In this section we consider the game 𝐺1 (𝑛) , where 𝑛 players start

together at the end location 1 on the line graph 𝐿𝑛 with nodes

1, 2, . . . , 𝑛. When some players first achieve "ownership" of a node

(are alone at their node), these players equally split a prize of 1.

Each player 𝑖 has a single strategic variable, her laziness probability

𝑝𝑖 .We seek symmetric equilibria (with all 𝑝𝑖 the same) for the cases

𝑛 = 2, 3.

We can consider this game as a selfish form of the social dis-

tancing problem with 𝐷 = 1 and𝑚 = 𝑛 (so it is also a dispersion

problem) on the line graph 𝐿𝑛 . In a version of this problem with

what we call territoriality, a player who is alone at her node becomes

the owner of it. This means she stays there forever, and anyone

else who lands there immediately moves away randomly in the

next period. So, the game considered here can be thought of as the

beginning of a dispersal problem with territoriality.

When 𝑛 = 2, this is an almost trivial case. For any 𝑝 ∈ (0, 1) , the
game eventually ends with probability one (as soon as one player

moves and one stays in the same period), with a payoff of 1/2, since

both players will achieve ownership at the same time. So any pair

(𝑝, 𝑝) is a symmetric equilibrium.

The case 𝑛 = 3 is more complicated, and the proof is in Alpern

and Zeng (2022). By symmetry, it is clear that when all players adopt

stay probability 𝑝,, they all have an expected payoff of 1/3. We will

show that when any two players adopt the same 𝑝, the remaining

player can get more than 1/3 by a suitable strategy, and hence there

is no symmetric equilibrium. The algebra involved in the proof is

greatly simplified if we consider the "modified payoff"𝑀 (𝑞, 𝑝) to
the single player (call her Player 1) adopting 𝑞 when the other two

adopt 𝑝. It is modified from the actual payoff by not giving her the

prize of 1/3 when there is a tie. So it will be enough to show that

Player 1 can always find a 𝑞 (for any 𝑝 adopted by the others) with

𝑀 (𝑞, 𝑝) ≥ 1/3 when a tie is possible, and consequently, her actual

payoff will strictly exceed 1/3. So no triple (𝑝, 𝑝, 𝑝) can constitute

an equilibrium.

Theorem 3. There is no symmetric Nash equilibrium for the game
𝐺1 (3).

The proof for Theorem 3 can be found in Alpern and Zeng (2022).

We refer the interested reader to that paper for the complete proof.

6 SIMULATION OF SOCIAL DISTANCING ON
THE LINE AND GRID GRAPHS

For larger problems with respect to 𝑚 and 𝑛,, we determine the

expected time to reach social distancing with 𝐷 = 2 by simple

Monte Carlo simulation methods. We place the𝑚 agents in some

specified initial locations on the network. Then we have them move

independently according to LRWs with the same 𝑝 value. After each

step, we find the minimum pairwise distance 𝑑 between agents in

the current state. If 𝑑 ≥ 𝐷 (= 2 for the examples here), we stop

and record the time 𝑇 . We carry out 5, 000 trials and record the

mean. Contrary to our earlier results, we find for the line and the

two-dimensional grid that it is optimal for the agents to follow

(independent) random walks, 𝑝 = 0. When 𝑛 is very small, it takes

a little longer to reach social distancing. While we focus on the

left corner start and the center start here, it is worth noting that

the situation where the agents are initially placed randomly on

the nodes has been analysed for some graphs in Alpern and Zeng

(2022).

6.1 The two dimensional 𝑘 × 𝑘 grid 𝐺𝑅𝑘

In practice, social distancing is often to be achieved by individ-

uals in a planar region. A good network model for this is the

two-dimensional grid graph 𝐺𝑅𝑘 with 𝑛 = 𝑘2
nodes in the set

{(𝑖, 𝑗} : 1 ≤ 𝑖, 𝑗 ≤ 𝑘}, as shown in Figure 2.

Figure 2: Two dimensional grids 𝐺𝑅𝑘 , 𝑘 = 3, ..., 6.

A natural starting state is the one with all agents at a corner

node (say (1, 1)) or at the center (both coordinates ⌊𝑘/2⌋. Figure
3



14 illustrates these times for values of 𝑝 spaced at a distance of

0.2. Note that for all the four values of 𝑘, the mean times to reach

distance 𝑑 = 2 are increasing in 𝑝 . This means that the random

walk, 𝑝 = 0, is the best. In terms of grid size 𝑘, It takes a bit longer

for the 3 × 3 grid because reflections from the boundary are more

common. For larger values of 𝑘 , the times do not appear to depend

much on 𝑘.

Figure 3: Time to 𝑑 = 2 on 𝐺𝑅𝑘 , 𝑘 = 3 to 6, from a corner start.

If the starting state consists of all agents at the center of the grid,

then we have a similar result, as seen in Figure 4.

Figure 4: Time to 𝑑 = 2 on 𝐺𝑅𝑘 , 𝑘 = 3 to 6, from a center start.

6.2 The line graph 𝐿𝑛

The graph 𝐿𝑛 has 𝑛 nodes arranged in a line and numbered from

the left as 1 to 𝑛. Like the grid graph, a natural starting state is

either all at an end (say node 1) or all at the center. We find that

the common value of 𝑝 should be 0, that is, the agents should adopt

independent random walks. Figure 5 shows this for a left start, and

Figure 6 shows this for a center start, at ⌊𝑛/2⌋.

Figure 5: Time to 𝑑 = 2 for left node start on 𝐿𝑛 .

Figure 6: Time to 𝑑 = 2 for a central start.

7 DISPERSION PROBLEMWITH
TERRITORIAL BEHAVIOUR

Territorial behaviour happens when an animal consistently defends

its territory from incursions by others. This behaviour is an inter-

esting topic in habitat selection and has been studied by Fretwell

(1970), Danchin, Giraldeau, and Cézilly (2008). They found that ani-

mals would avoid coming to an area with a high density of previous

animals. As an extension, we now study the effect of territorial

behaviour at the social distancing problem with 𝐷 = 1 and𝑚 = 𝑛

(also called dispersion problem) on the networks by simple Monte

Carlo simulation methods. We define agents’ strong territorial be-

haviour as: if an agent is alone on a node for the first time, this

agent then owns the node and stays there forever. Any other agent

that comes to a node which is owned will be pushed away and will

move to the adjacent nodes randomly in the next period.

Agents are placed together initially at the leftmost location of a

line graph 𝐿𝑛 . Then we have them move independently according

to LRWs with the same 𝑝 value if they are not alone. Once an agent

is alone on a node, he will be marked as the owner of this node.

Then he will stay with probability one forever, and all the other

agents who come to nodes with owners will move randomly to an

adjacent node with probability one in the next step. After each step,

we find the minimum pairwise distance 𝑑 between agents in the

current state. If 𝑑 ≥ 𝐷 (= 1 for the examples here), we stop and

record the time 𝑇 . We carry out 5, 000 trials and record the mean.

7.1 The case of 𝐿3 and 𝐿4

On the graph𝐿3 and𝐿4, the strong territorial behaviour significantly

decreases the expected time for all agents to reach the absorbing

state (also called the dispersion time). For 𝐿3, as seen in Figure

7, without strong territoriality, the minimum dispersion time is

6.14 with optimal 𝑝 = 0.22 and with territoriality, the minimum

dispersion time is 4.55 with optimal 𝑝 = 0.24. The optimal 𝑝 are

similar on 𝐿3, but the strong territoriality decreases the dispersion

time by 26%. For 𝐿4, the optimal 𝑝 are now quite different. Without

strong territoriality, the minimum dispersion time is 16.74 with

optimal 𝑝 = 0.31; with territoriality, the minimum dispersion time

is 9.45 with optimal 𝑝 = 0.10. The optimal 𝑝 is much smaller when

agents have strong territoriality on 𝐿4, and the strong territoriality

decreases the dispersion time much more (45%) compared to the

𝐿3 case.

4



Figure 7: Dispersion time on 𝐿3 (brown) and 𝐿4 (blue) with
(dashed) and without (solid) strong territoriality.

7.2 The case of 𝐶3 and 𝐶4

Like the line graph, the strong territorial behaviour significantly

decreases the mean dispersion time on𝐶3 and𝐶4. For𝐶3, as shown

in Figure 8, without territoriality, the minimum dispersion time is

4.41 with optimal 𝑝 = 0.26 and with territoriality, the minimum

dispersion time is 3.17 with 𝑝 = 0.38, which is 28% less than the one

without territoriality. Moreover, the effect becomes stronger when

the network becomes more complex. On 𝐶4, without territoriality,

the minimum dispersion time is 11.68 with optimal 𝑝 = 0.27, and

with territoriality, the minimum dispersion time is 5.40 with 𝑝 =

0.34, which is 54% less than the one without territoriality.

Figure 8: Dispersion time on 𝐶3 (brown) and 𝐶4 (blue) with
(dashed) and without (solid) strong territoriality.

8 CONCLUSIONS
This article introduced the Social Distancing Problem on a con-

nected graph, where agents have a common goal to have all their

pairwise distances be at least a given number𝐷.While different mo-

tions and information could be given to the agents for this problem,

we give them only local knowledge of the graph and no knowl-

edge of locations of other agents. So they know only the degree of

their current node and lack memory. These assumptions limit the

motions of the agents to Lazy Random Walks. We showed how to

optimize their common laziness value 𝑝 to achieve social distancing

in the least expected number of steps. We considered various graphs

and both exact and simulated methods. In some cases, the optimal

motionwas a randomwalk (𝑝 = 0) or a loop-randomwalk (choosing

their current node with the same probability as each adjacent one).

While we mostly consider the common-interest team version of the

problem, we also studied cases where agents had individual selfish

motives - we showed that in some cases, no symmetric equilibrium

exists. Finally, we showed the territoriality decreases dispersion

time.

We expect this area of research to be enlarged to other assump-

tions:

• Agents know the locations of some or all of the other agents.

• Agents have some memory.

• Agents know the whole graph.

• Agents can gain ‘territoriality over a node’.

In this first paper on social distancing, we have restricted our-

selves to considering only some simple classes of the graph and

small sizes. It is to be hoped that further research in this area will

find new and stronger methods able to study general graphs.
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